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Synopsis 

A numerical simulation of entry flow in a slit die has been undertaken for a fluid that is 
Newtonian in shear but exhibits normal stresses (Boger fluid). Experimentally measured 
normal stress and viscosity data are included in a simple rheological model. Flow patterns 
reveal the existence of vortices in the reservoir corners. Vortex size and intensity increase 
rapidly with elasticity level. 

INTRODUCTION 
The numerical simulation of polymer solutions and melts with several 

viscoelastic fluid models has been a major undertaking by various research 
groups in the last decade. These efforts have been recently reviewed by 
Crochet and Walters.’ The simulations have concentrated mainly on entry 
and exit flows of polymeric liquids in dies, where the viscoelastic nature 
becomes important. Results with the second-order, upper-convected Max- 
well and Oldroyd-B fluid models have been unable to predict the dramatic 
vortex growth of polymer solutions and melts in entry flows. Only recently 
have encouraging results been presented with a Phan Thien-Tanner model2 
that show a significant increase of vortex size and intensity in a 4:l axi- 
symmetric contraction. However, the authors2 failed to compare their nu- 
merical results to visualization experiments. It is not clear how the 
rheological parameters chosen for the numerical simulations influence the 
final results and how these values relate to the rheological properties of 
polymer solution and melts. 

In this study we used the experimental data obtained by Nguyen and 
Boger3 for a viscous material (test fluid El) that is Newtonian in shear but 
highly elastic. This fluid consists of 97% glucose syrup, 3% water, and 
0.057% separan. Such solutions exhibit strong viscoelastic behavior and are 
usually referred to as “Boger fluids.” A simple constitutive model that is 
valid in simple shear flow was introduced into the general equations that 
describe two-dimensional flow. A finite element program was used to solve 
these equations in a 1 O : l  planar contraction. The growth of the corner vortex 
was determined as a function of fluid elasticity. 
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MATHEMATICAL MODEL AND TEST FLUID PROPERTIES 
The mathematical model originally considered was the Criminale-Erick- 

sen-Filbey constitutive eq~a t ion .~  This has the general tensorial form 

where q, Y1 and Y2 are the viscosity, first and second normal stress coef- 
ficients, respectively. These are, in general, functions of the magnitude of 
the rate-of-strain tensor 

where I2 is the second invariant of the rate-of-strain tensor. The operator 
52 /9 t gives the corotational or Jaumann derivative 

where oij is the vorticity tensor given by 

or, = (aui/axj - avj/axi) (4) 

For the case of q, Yl, and Y2 constant, the CEF equation becomes that of 
a second-order fluid. 

Finite element calculations for second-order fluid flow in a 1 O : l  planar 
contraction failed to converge for Deborah numbers higher than 0.75 using 
the Picard iterative ~ c h e m e . ~  The Deborah number was defined as 

De = A y w  (5) 

where A is the characteristic material time given by 

A = YJ2q (6) 

and pw is the shear rate at the slit wall. For De up to 0.75 the flow field 
remains essentially the Newtonian in agreement with the Giesekus-Tanner 
the~re rn .~  The Newtonian flow field exhibits a small and weak corner vortex 
that remains basically unchanged for higher elasticity levels. Inclusion of 
dependence of q, Yl, and Y2 on 191 deteriorates the results and lowers the 
convergence limits. 

The failure of our iterative scheme to converge for high De numbers was 
apparently due to excessive approximation error involved in the calculation 
of the strain rate gradients appearing in the CEF equation. Thus, we decided 
to examine the convergence limits by eliminating all the terms involving 
strain rate gradients and simplifying the remaining terms to their simple 
shear forms, which are 

7 x 2 .  = q ? x x  + w 1  + T2)5ey (7a) 



PLANAR ENTRY FLOW OF A VISCOELASTIC FLUID 1381 

7.w = qYw + *2Y:y (7b) 

r x y  = 7 Y x y  (7c) 
Since it is well known that the second normal stress difference is much 
smaller than the first normal stress difference: we decided to use \y2 = 0. 
Thus, the above equations reduce to 

This highly simplified model was used to simulate the planar entry flow 
of the test fluid El as given in the paper by Nguyen and B ~ g e r . ~  The data 
for shear stress and normal stress difference vs. shear rate were fitted by 
the following relations: 

T X Y  = q y x y  

Nl  = r,  - r,., = Ay$ 

where 

and 

q = 18Pa.s (11) 

A = 22 Pa - sb, b = 2.0, for y < 2 s-* (12a) 

A = 36 Pa - sb, b = 1.25, for 2 < y < 22 s-' (12b) 

A = 80 Pa - sb, b = 1.0, for i/ > 22 s-l (12c) 

We note that for 7 < 2 s-l, we have a quadratic behavior of the first normal 
stress difference with shear rate, which is also exhibited by the second- 
order fluid model in viscometric flows. However, for values of? higher than 
22 s-l, we observe a linear dependence of Nl with y .  

According to the proposed constitutive model, eq. (10) is written as 

NI = rxx - r,., = Ay$y = ~ ~ y ; ~  (13) 

or 

q1 = (14) 

The elasticity level for this fluid is assessed by the Deborah number, 
which is given here by 
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where pw is the shear rate for fully developed Poiseuille flow in the slit. 
While this simplified model does not obey tensorial invariance and ob- 

jectivity, it has some other advantages. First, it does not contain derivatives 
of strain rate, and thus the approximation errors are reduced. Secondly, it 
describes the experimentally measured viscous and normal stress behavior 
of the polymeric solutions under examination (Boger fluids). 

In the finite element formulation the Newtonian contribution to the stiff- 
ness matrix remains constant and the extra term of eq. (8a) enters in the 
load vector as an effective body force. First, we solve for the Newtonian 
case and then iterations are performed on the load vector using the Picard 
method until convergence of the norm-of-the-error criterion is a~hieved.~ 

RESULTS AND DISCUSSION 

The numerical simulations were performed for a 1 O : l  planar sudden con- 
traction using the finite element method. The finite element grid is shown 
in Figure 1. It consists of 200 triangular elements and 459 nodes. Details 
about the method employed can be found el~ewhere.~J Calculations were 
carried out for the same values of p as given in the photographs presented 
by Nguyen and B ~ g e r . ~  According to eq. (15), higher values of p correspond 
to higher values of De. We were able to achieve monotonic convergence for 
values of De up to about 2 within 4-5 iterations. For De = 2.22, convergence 
was monotonic up to six iterations and then the norm-of-the-error criterion 
levelled off. This value of De corresponds to p = 40 s-l. In axisymmetric 
flow Nguyen and Boger found that at this shear rate and over the flow 
field was unstable. It is not clear whether the equivalence of numerical 
and physical stability limits is fortuitous. 

Figure 2 shows our results for different Deborah numbers. The vortex 
grows in size and intensity considerably. Its intensity increases from 0.3% 
for the Newtonian inelastic case (De = 0) to 20% for De = 2.22. For pw = 
1.8 s-l, i.e., within the quadratic behavior region of normal stresses with 
shear rate, we observe a slight increase in vortex size and intensity over 
the Newtonian. Assuming quadratic behavior up to De = 2.2 also increases 
the vortex size and intensity but that increase remains very moderate, as 
shown in Figure 3, for De = 1.1 and De = 2.2. These results are also 
illustrated in Figure 4, where the vortex intensity (maximum value of the 
dimensionless stream function -$&,ax of the secondary flow) is plotted 
against the Deborah number. 

1.000 
.300 

0 .800 

- 
- 
w .700 

.LOO 
5 -500 
@ .400 
8 . d o 0  
7 . z o o  
2. . l o o  

0.000 Y I V W  I I I I I 1  I I l i  
-2----c2--- 

/ - -  

I 

0.0 .2 .4 .b .0 1.0 1.2 1.4 1.6 1.8 2.0 2 . 2  2.4 2 . 6  2.8  3.0 3.2 3 . 4  3.6 1.8 4.0 

X-COORDINATE (CMI 

Fig. 1. Finite element grid for die entry flow in a 1 O : l  planar contraction and die dimensions 
(inset). 
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Fig. 3. Flow patterns predicted by considering quadratic dependence of normal stresses 
for a Boger fluid in a 101 planar contraction. 

A direct comparison with the experimental results of Nguyen and BogeI.3 
for axisymmetric flow shows that the numerically found vortices are some- 
what shorter in size. If we consider the dimensionless vortex length X as 
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Predicted vortex intensity VS. Deborah number for a Boger fluid in a 1O:l  planar 
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and planar 101 contractions (L, = vortex length, H ,  = reservoir half-width): (-) Nguyen 
and Bogel-3 (ca. exptl. 101k (0) present work (numer. simul. 101). 

a function of De (see Fig. 51, we get results that are always lower than 
Nguyen and Boger’s, especially for the more elastic cases. In this figure the 
curve for a capillary die represents our best estimate for a 1O:l contraction 
based on experimental data for various contraction ratios3 The discrep 
ancies can be attributed to different geometry (slit vs. capillary). Indeed, 
similar experiments with dilute polymer aqueous solutions in slit dies have 
revealed strong vortices of shorter size than in capillary dies (Adachi and 
Yoshioka8). Unfortunately, data on material properties were not provided 
and therefore the experiments cannot be reproduced numerically. However, 
Adachi and Yoshioka give an empirical relation for the vortex size, which 
is of the form 

Based on the above equation and the Reynolds numbers for our numerical 
simulations of Boger fluids: we were able to establish a general trend of 
smaller in size vortices for slit dies, fully in agreement with our finite 
element calculations. This is believed to be inherent in the geometry, the 
same way that slit dies produce in general a higher degree of swelling than 
capillary dies for the same De number. 
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Some other characteristics of the solution include the center-line velocity, 
the center-line, and wall pressure and the corresponding entrance correc- 
tion. The center-line velocity distribution in dimensionless form is shown 
in Figure 6 for different values of De. For the higher De numbers there is 
an increase of centerline velocity before the contraction due, apparently, 
to the existence of the intense corner vortices that distort the flow field. 
For De = 2.22 there is an overshoot that reaches 2.85%. Overshoots have 
been observed both experimental for LDPEg and numerically with the Old- 
royd-B fluidlo and the Phan Thien-Tanner fluid.2 LDPE has shown as much 
as 20% overshoot, whereas the Oldroyd-B fluidlo gives about the same ov- 
ershoot for this De number as found in the present work. The Phan Thien- 
Tanner fluid2 exhibits very high overshoots (up to 100% for high elasticity 
levels). 

The center-line and wall pressure drops (rendered dimensionless by di- 
viding by 27, twice the shear stress at the slit wall) show a decrease with 
increasing De number, as illustrated in Figures 7(a) and 7@), respectively. 
The wall pressure reveals the discontinuity at the entrance corner to the 
slit where a stress singularity exists. Pressure drops are used to evaluate 
the entrance correction nen, which is plotted against De in Figure 8. The 
entrance correction is defined by 

where AP the overall pressure drop, AP,, the Poiseuille pressure drop in 
the slit, and 7,  the shear stress at the slit wall. The results suggest that 
the effect of normal stresses alone is to decrease the entrance correction. 
The same conclusion was also reached by Choplin and Carreau,'l who per- 
formed pressure drop measurements on Boger and other fluids and then 
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Fig. 7. (a) Dimensionless centerline and (b) wall pressure distribution for various Deborah 
numbers for a Boger fluid in a 101  planar contraction ( W A L L  = shear stress at the slit 
wall T ~ ) :  De: (-4 0; (-4 1.10; (- - 4 1.76; (- . . -) 2.17; (. . .) 2.22. 

analyzed the results using macroscopic energy balances. Their data show 
that the entrance losses for Boger fluids are smaller or close to values 
obtained with Newtonian fluids. A decrease of entrance correction with De 
was also noted with an integral Maxwell modeP and an Oldroyd-B model.1° 
However, these conclusions are not corroborated by experimental mea- 
surements on polymer melts. It is widely believed that entrance losses 
should increase with De.13 It is remarkable that recent finite element cal- 
culations using the Phan Thien-Tanner model2 show an increase of entrance 
losses with De. The inability of all the other models, including the present 
one, to give such a prediction, might be due to poor elongational behavior. 
Unfortunately, elongational viscosity data are very difficult to obtain and 
not available for the fluid tested. In the proposed model, the elongational 
viscosity equals 3q (Trouton viscosity). It is not known how well such a 
relation represents the elongational viscosity of Boger fluids. 

From the foregoing discussion it is evident that a simple constitutive 
model that is correct in simple shear flow predicts vortex growth with 
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elasticity level while more elaborate models failed to do so. It must be 
pointed out, however, that some of the tensorially invariant and objective 
models presuppose some totally unrealistic results. For example, the Max- 
well fluid gives an infinite elongational viscosity at a finite elongation rate, 
while the second-order fluid gives the same flow patterns in planar flow as 
a Newtonian fluid according to the Giesekus-Tanner t h e ~ r e m . ~  

The flow field in the entry flow for a 1 O : l  planar contraction is far from 
being viscometric. The growth of vortices is apparently due to the relative 
magnitude of elasticity in the reservoir (low) and in the slit (high). The 
model failed to predict vortices of any significant size and strength at the 
De range examined when a quadratic normal stress relation is used. This 
suggests that the wall values of the Deborah number are not sufficient to 
characterize the flow behavior of viscoelastic fluids. 

Some calculations were also carried out for flow in axisymmetric con- 
tractions. Qualitatively the same results were obtained; however, the nu- 
merical scheme had a tendency to go unstable at a lower De value than 
for two-dimensional flow. Current efforts are aimed at extending the De 
range for stability and will be reported on in future publications. 

CONCLUDING REMARKS 

The flow patterns in a rheologically characterized test Boger fluid have 
been numerically determined in the entrance region to a slit die using the 
finite element method. The fluid is Newtonian in shear but also exhibits 
normal stresses. A constitutive model that is correct in simple shear flow 
has been used to study the effect of normal stress in the entry flow field. 
The results show a drastic increase of the vortex size and intensity with 
Deborah number, which is also in agreement with experimental observa- 
tions. Pressure distributions are used to determine the entrance correction, 
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which decreases rapidly with De. It is believed that the latter behavior is 
not realistic and that a correct elongational viscosity must be included in 
the constitutive model. 

It is argued that a single Deborah number at the slit wall is not sufficient 
to determine the vortex patterns. Quadratic normal stress behavior when 
extended to higher shear rates does not produce vortices of any significant 
size or strength for moderate wall De values. 
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is gratefully acknowledged. 
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